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1. INTRODUCTION

Several models have been proposed for the spall process that accompanies most
nuclear explosions. The models are very difficult to validate directly because (1) the
features of the process that can be measured, such as vertical motion at the surface, are
observed at only a few locations above the shot, and (2) there are few observations of
features such as the depth and area of the spall zone and the distribution of motions
within the zone. Two-dimensional nonlincar simulations of the explosion, which
include the physics of the free-surface interactions, provide an opportunity to examine
spall, and to find simple models to represent it. We present a linear model for the
spall process and find its parameters by comparing with the seismic waves from explo-

sion simulations.

Using a form of the elastodynamic representation theorem, we have calculated the
short-period body waves emanating from the source zone of the numerical simulations.
The implications for teleseismic magnitude measurements were discussed in Day,
et al. (1986) and McLaughlin, er al. (1988). By comparing these P and SV
wavefields with one-dimensional nonlinear calculations (which do not include the non-
linear effects of the free-surface), we can isolate that part of the wave field due to the
nonlinear interaction with the free-surface. We find that a simple tension crack with
an opening that propagates with the pP arrival from the explosion fits P-waves from
simulations of both Pahute Mesa and Shagan River tests. However, the model which
fits the P-wave radiation generates SV-waves that arc too small, which indicates that

there are additional sources of shear waves in the finite difference simulations.




The tension crack model, proposed in its original form by Day, er al. (1983), is a
physical model whose parameters can be compared directly to field observations. The
parameters of the model are spall depth and area, detachment velocity, and momentun.
The parameters inferred from the simulations are consistent with published estimates of
these values. The time dependence of the far-field waveforms is a natural consequence
of the model and requires no ad hoc choice of time history to include the effects of
source finiteness, the importance of which has been pointed out by Stump (1985).
Although there is a trade-off between the parameters of the model, the amplitudes and
waveforms from the two-dimensional (2D) simulations tightly constrain the set of

parameters which fit the simulations.

The form for the linear source representation of the spall model is such that it can
easily be added to a one-dimensional (1D) explosion source to compute regional and
teleseismic synthetic seismograms. In a companion paper, McLaughlin, et al. (1990),
use the model to compute the effects of spall on synthetic regional explosion seismo-
grams. It is found that the spall contribution to the Lg signal is comparable to the

direct explosion contribution.

In the following, we describe the tension crack model and show how it has been
implemented. We then compare the body waves from the model with those from the
numerical simulations and compare the parameters of the model with field observa-

tions. Our conclusions are presented in the last section.




2. THEORY
2.1. Tension Crack in a Layered Medium

Our model for the spall process is a horizontal circular tension crack, shown
schematically in Figure 1. The crack lies above the explosion and opens when the
free-surface rarefaction from the explosion encounters the crack. The material above

the crack is assumed to fly straight up and return undcr the influence of gravity alone.

We have extended the circular tension crack model of Day, er al. (1983) to
include a time dependence which describes the detachment and slap-down of the spall
volume as well as the finite size (radius) of the crack. The spall volume in the model
is defined as the cylinder whose radius is that of the tension crack and which extends
from the crack to the surface. Since we wish to compare the spall model with 2D
simulations which were done in a layered medium, we developed the formalism for
computing the far-field body waves emanating from a layered medium. The parame-
ters of the model are the crack radius and depth, and the distribution of detachment

velocities over the crack.

In this section, we present the complete body wave formalism. We then make
some simplifying assumptions to make important features of the time history and spec-

trum apparent.

We begin with the representation theorem from Aki and Richards (1980), which

describes the displacement field due to a discontinuity on a surface X :

Up0,0) = [f mpg €1) * Gpp g 6-51) T 1)
z

where
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X is the observer’s position,

& is a position on X,

G,,p(x—g,t) is the Green’s function giving the component of displacement in
the x,, direction at x due to a force in the §, direction,

Gpp o (x—E.t) is the gradient of G,p (x—5,1) in the &, direction,

Myq (§.¢) is the moment tensor density for the discontinuity, and

* denotes temporal convolution.

For an isotropic medium, the moment tensor density is given by

Mpq (§1) = Av [ (§,0)18, + u{vp [ug Gt)] + v, [, (€t )l} 3
where
A and p are the Lame’ parameters (at §) for the medium,
(1] is the slip (crack opening) along the discontinuity,
y is the unit normal to the discontinuity, and

8pq is the Kronecker delta.

(Repeated indeces indicate summation over three components). For a horizontal ten-

sion crack with opening s (§,,£,,1),

vi =[0,0,1] A3

k" =100, s&.20 1 ,
and the moment tensor density is

A0 0
m =S(§1,§2,1) 0 A 0
0 0 A+2u

The geometry of the problem is shown in Figure 2.
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We now specify that the horizontal crack is circular with radius @ and that the
discontinuity varies only with distance from its center (axially symmetric). Invoking
cylindrical symmetry and converting to cylindrical coordinates, the displacement field
is

i a

w=[ [ D o o) + 042 3, G ) * €0t rodro do . (@

Here, r(,9,2 are the source cylindrical coordinates
&) = ro cos(9)
§2 =Tg Sln(¢)

€3=1z9

Our obijective is to compute the body waves leaving a layered stack. We use the
formalism of Fuchs (1966) and Bache and Harkrider (1976). The Fourier transforms

of the P wave Green’s functions in the notation of Fuchs are given by

k2 = o
G = -5 [ & Kf e kak (5)
0

Here, k is the wavenumber for phasc velocity c, AJ is the downgoing wave potential
amplitude due to a force in the j direction, 7" is the vertical distance from the bottom

of the stack to the observer,

ran = [(c/0,,)-11'7
and k4 = wa, , where o, is the P wave speed in the half-space below the stack. The
details on the computation of A/ can be found in Fuchs’ work. The kernels K 5 are
KL = —ikr o d o(KF) (©6)

K5 = ~ik 1(kF)




KD = —ikr o, J ((KF)
1
Ky = Sk o4 (k)]
where J, is a Bessel function of the first kind of order v. The coordinate

¥ =1r-ry |, where r is measured from the center of the crack to the observer.

The SV Green’s functions are

G ) =2yt o [ @ K T ke ™
0

where the SV potential amplitudes are

K3 = Jokr) ®)
K5 = —irg,J 1(kF)

| CMENN(

—l

K37’ = = rgalJ okP-T k)]

Substituting (5) and (6) into (4), we have for the vertical component of the P

wave

Uan

ur ) = 2mk 2
o

2n a e
[ [ B&F) e Sro) k? ro dro do dk ©)
000

where

BKkF) = N A= [kr o] ok HH(1=r 7V 1 ()] + (200) 3, A (kP)
0
Following Fuchs (1966), we evaluate (9) using the saddle point approximation, which

is valid for

R = N4 3 \z¢+r¢ (10)

That is, it is good for observer distances much greater than the source radius and

depth. Fuchs shows that integrals like (9) can be solved using the relation




[ £k e g, Pk =™ f k,w) e =R r o R7L
0

Applying this to Equation (9), we have

CP 2r a v
Z —i
uf(,t) = R FP(w,k) f f ¢ kR S(org) rodrgdd
00

where

FP(wk)= A A% + (A+2p) 9, A ,

CF = —cos%0p

(amn

(12)

and 6p is the P wave take-off angle. The wavenumber k is evaluated at the takeoff

angle; k=w/c, c=a,/sin(Bp). To evaluate the azimuthal integral in (12), we invoke

the far-field condition (10), and approximate the slant range R with the lower order

terms of its Taylor series,

R = F——'ro
f
where
P o=NT24r? |
Refering to Figure 2, we see that
r .
— =sinBp cosd ,
P

so that (12) becomes

p C; p ikt ¢ ikrecosh
uz(zc,t)=m Fl(wk)e ™™ j j e S(w,rg) rodrodd
00

Using the integral representation of the Bessel function

1 2n
= —_— iEcos
Jo© o g e do ,

we have

(13)




P
z

R

a
uP) = = FP (k) e™=" | S(re) Jolkro) rodrg - 14)
0
Applying the same steps to the SV Green’s functions (7), we find

N7

C L. @
ufv(&,t)=—;—FSV(m,k)e_‘k“"’ [ S@,ro) Jotkro) ro drg . (15)
0

where
FV (k)= L o"% + (A+2p) 0, 0 ,
GV = sin(26gy) .
The radial integral in (14) and (15) can be evaluted numerically, or solved analyt-

ically for certain algebraic forms of S (w,r;). Some examples follow. First define

P =| S(@re) Jotkro) rodry ,
0

then for constant crack opening

S(O.),ro) = SO(O)) ’

we find

P(w) = % J (ka) S(w) .

If instead the dependence of crack opening on radius is quadratic,

(a*r$)
S@ro) =So@——
P(w) = 2k2 J,(ka) So(w) . (16)

Finally, for a Gaussian dependence,

S (0)".0) = So((l))e ~(ro/a)?

P(w) = % a2e-—(ka/2)2 SQ(O.)) .

We note that the effective far-field source function under these assumptions is the

10




Hankel transform of the distribution of displacement on the tension crack. We shall
refer to these means of calculating P(w) in Section 3. We discuss next the

specification of the time history S (w,7g).

2.2, Time History

The model presented here is based on a tension crack which opens due to a ten-
sion wave from the free surface. We assume that the material then simply behaves
ballistically, and that no restoring forces in the medium add to bring the material back
down to its original position. The displacement at each point on the tension crack then

has the time history

1 2
0 for T > 2v (rg.tg)/g

S(t,ro =
where v (rg,t) is the detachment velocity, t=t~t, t( is the time of initiation at r¢ and
g is the acceleration due to gravity. The form of v(rg,tg) can be regarded as a param-
eter of the model, and we have experimented with various forms of v(rq,tg) while
fitting the model to numerical simulations. These forms included (1) analytic distribu-
tions of initial velocities which initiate at the same instant across the crack ( ¢, is con-
stant), (2) random distributions, and (3) distributions which propagate outward with the

pP phase from the explosion. The first form allows P (w) to be evaluated analytically,

as shown above in Section 2.1. P(w) must be evaluated numerically for the third

form. In this case, we set

to(ro) = NQzg+zp)*+r¢ 1 o
and v (r() to some algebraic function of r, . As we shall see in the next section, the

11




analytic first form was adequate for the Shagan River simulations, while the third

numerical form was required to fit the Pahute Mesa simulations.

Another approach is to view the spall opening as a stochastic process where one

has only probabilistic estimates of the process. This allows us to make general state-

ments about the far-field radiation. We assume that the detachment velocities at each

point on the crack are distributed randomly between minimum and maximum velocities

v, and v, according to a probability density function ¢(v). We make the bounds expli-

cit by writing

oW)=f (V) [H(v=v)-H (v-vy)] .

where

va

[ Fo)av =1.
Vi
The estimate of the separation history is then

S@)=[ t (v-vy) 6(v) dv

Ve

where

=1
v, = 2gt
Introducing the moments of the distribution

b
M;(a,b) =ij f@)av ,

a

the separation history can be written as

Sy =1t M (vy.v2v, |AH O1)) +

! [M 1(Vg RY 2)—'V8M0(Vg »V 2)]AH (tl,t2)
where

12

(18)




and

AH(tl,tz) = H(t‘t 1)—H (t‘-tz)
is a "boxcar” turning on at ¢; and off at t,. We have included the details of the open-
ing history because as we shall see in the next section, the displacement for far-field
waves is proportional to the second derivative of §(¢), which is given by

dS ()

=M (vy,vy) 8(t) — g AH (0,1)) + (19)
de?

(57 ¢ -8M oy v DIAH (21,17
We note that for any distribution &(v), the high frequency response will be dominated
by the & function term, which is proportional to the first moment, or the mean velocity
of the distribution. This delta function term is the detachment phase which is followed
by a free-fall dwell, which is the second term in the equation. The last term is slap
down. We will discuss this equation and other features of the model in more detail in

the following sub-section.

2.3. Features of the Model

In the following, we make some simplifying assumtions for the purpose of illus-
trating the features of the model. First, we assume that the earth model is a uniform

half-space. In this case, the kernels ¥ and FSV become

i

207,

FP (k) = [ (=207 (7" 4R pe™ ™) + 282pMeRpe ™ } (1)

and

13




i®
4%,

where p=1/c is the slowness, and N2 = a>~p2. The travel times for the P, pP, sP, S,

FS (k) = [ 2pMasP (€™ —Ryse ™) — (1-2p2B2) R,se "% 1 (20)

PS and sS phases are denoted by p, t,p, Lp, Is, t,s and I, respectively. The vari-
ables R,p, Rep, Ry, and Ryg are the corresponding free surface reflection coefficents

(for potentials), given by

Rop = lngnpp? - B2-2p2%/ Dy ,
Rp =-4ng B2-2p%/ Dy ,
R,s =4ny (B>-2p%/ Dy ,
with
RsS =RpP ’
Dy = dn ngp? + (B2-2p2)?
Long Period Limits
We note first that the DC values of FF and FSV approach zero at least as fast as

w?. In addition to the factor of @ in (19) and (20), the quantities

(142p2B7%) (14R,p) + 2B%pNoR,p
and

2B%p Mg (1-Rys) — (1-2p*B D Rys
(the limits of the functions in brackets in (19) and (20) as w—0), are identically zero.

As pointed out by Day (1983), the spall process should contribute no net force or

momentum.

14




Small Take-off Angle Approximation

Next, we restrict our attention to steep take-off angles ( small 8, and Oy, ).

Expanding the reflection coefficients to second order in take-off angle, we find
Rp=-1+ (-5)39,% ,
R =-ole, |
s = B0y

RSS = —1 + 'gesgv .

Expanding the remaining quantities in (19) and (20), we find to O (83,) that
FP = % {[1_2(%)293] (e-ioxp__e—imt,,p) _ 8(%)393(e—i0¥pp_e—iwl,p)} (21)

FS = % gy (e Vs e s ™I s 22)
Axial symmetry demands that the SV motion be zero as 65, —0, as seen in (22). For
small angles, the P wave motion is dominated by the P and pP phases, which for small

depths of the tension crack, appear in (21) as a numerical first difference operator.
Approximation for Periods Long Compared to Travel Time to the Surface

The values of the depth of the tension crack that we infer from the numerical
simulations in Section 3 are less than 200 m. The P-pP travel time for the Pahute
Mesa model is about 0.25 seconds, and less than one-half that for the Shagan River

model. So for frequencies much less than about 4 Hz, w(tp—t,p)«1, and

e T = ) M2, PR (23)

Then (21) becomes (to 0 order in 6p ),

€
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-z,

Ff = eI (24)

o
Recall Equation (14), for the P wave displacement. The motion along the ray is

approximated by

2

Wz,

P S —1Mp
Urgy (@) = ——e PP () . (25)
T o’R
Assuming that crack opening is constant, and taking the inverse Fourier transform of

(25), we obtain

Zg

P — 221172 N
uray(t) = p2a2R [(ap) —t ] 2 % SO(I—IP) . (26)

Finally, we assume that the periods of interest are also longer than ap, the time it
takes for a wave to travel across the tension crack. Typical teleseismic values of p are
less than 0.1 sec/km and values of a are around 1 km, so pa<0.1 sec. In this case, we

can write

p% [(ap)*—tY\? = %naz 8() ,
(26) becomes
Mypall

2(A4+21)R
where m,pal_:=pitzsa2 is the mass of the material lifted by the spall process. The P-

ub (1) = Solt=tp) , Q7
wave amplitude is then proportional to the spall mass, and the opening acceleration S.
Recall that in Section 2.2, we proscribed the opening history for a distribution of
detachment velocities. We assume the distribution is uniform (f (v)=1.) between velo-

cities v and v,, evaluate (19), and substitute the result in (27):

Mspaiy

—PL v - X 2
SO+ 20R [V O(t)—gAH(0;) + (28)

Ul (1) =

16




B (v YAH (1))
S Vs AN (1))
where t'=t—tp and V=(v,+v,)/2. Equation (28) is shown schematically in Figure 3.
The inital & function term is proportional to MgV , the mean spall momentum. The

dwell term is mg,; ¢ , the gravitational restoring force. The duration of the dwell is

ty, and that of the slap down is ¢—t,.
The far-field SV displacement is approximated by

2 .
usy(e) = lBaR— By S(1) * [B(t—t5 1+8(t~1,5)-28(t~1,)] (29)

Spectral Characteristics

The spectrum of the body waves from the tension crack model is a narrowband
signal. To see this, consider Equation (25). As w—0, P (w) approaches a constant pro-
portional to the area of the crack, so the far-field displacement approaches zero as 2.
This is the case for any type of dependence of opening on ry. The frequency limit
depends on the details of S(w,rg), but we can make some general statements. Using
the time dependence discussed above in Equation (19), it can be shown that at high

frequencies, S (w)=M (v,,v,), the mean detachment velocity. Then

a
P(@)=M; [S(ro)rodrg .
0
For constant opening (Section 2.1), upon using the asymptotic approximation for the

Bessel function,

Z i
Uy (@) = 0772 o ‘¥ P () cos(ka-3m/4) (25)
a

32

which rolls off at a rate of w™'“ at high frequencies. However, for a crack opening

distribution which goes to zero at the edge of the crack, the roll off is faster. Consider

17




S (1)

vo(t)

Figure 3.

Schematic drawing of the detachment acceleration history which is
proportional to the far-field P-wave displacement.
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a distribution

r
Solrg)=1-(=)",
o(ro) (a)
where n is a positive integer. With a little manipulation,
1

(ka)"
where {=kr,. It can be shown that at high frequencies, this expression is proprotional

ka
P(@) =M, —k"—zg ¢ dg
t0 k72, so that the displacement rolls off at @ 2. Thus, any radial dependence which
goes to zero as fast as a power of rg, will have a roll off of @2, The spectrum is
shown schematically in Figure 4. Since explosion models typically decay as w2 at
high frequencies, and are flat at low frequencies, the tension crack will be a more nar-
rowband signal than the explosion by itself. Thus, if the spall contribution is compar-

able to that of the explosion, it will be so only in a narrowband.

19




()

URAY

=5/2

Log ¥ {

I
I
|
I
I
I
I
I
I
I
I
I
I
|

1/2 (Vo= Vy) ™'
Log Frequency
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3. COMPARISON WITH NUMERICAL SIMULATIONS

The objective of this study was to derive a simple, linear physical model which
represents the spall process. Our strategy has been to isolate source interaction effects
by comparing the wavefields from 2D calculations, u,p, with those from 1D calcula-
tions done, up, in the same source materials (but in an inifinite medium). Our work-
ing assumption is that the difference in the wavefields represents the free surface
interaction effects, as sketched in Figure 5. In fact, the procedure has been to find the
difference in the displacements u,p—up, and vary the parameters of the model
(described in the previous section) to fit the displacements ug,,; . Alternatively, we
could have found ug,,; which satisfies up+ugpa = up. We found the first approach

(o be more direct.

To find the ground motions from the 2D calculations, we used the methods
described in Rodi, et al. (1978), Bache, et al. (1982), and Day, er ai. , (1983,
1986). The 2D simulations themselves are described in Day, et al. (1986). The elas-
tic properties for the Pahute Mesa and Shagan River simulations are shown in Table
3.1. The method for computing the body waves entails evaluating a form of the elas-
todynamic representation theorem, which gives the motions in terms of spatial and
temporal convolutions of displacements and stresses monitored on a surface surround-

ing the nonlinear zone with Green’s functions and their spatial gradients.
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Table 3.1
Elastic Structure for the Shagan River Simulations
I.~ver Compressional Shear Density
Thickness Velocity Velocity
(m) (m/sec) (m/sec) Kg/ m3
oo 5018 2789 2700
Elastic Structure for the Pahute Mesa Simulations
Layer Compressional Shear Density
Thickness Velocity Velocity
(m) (m/sec) (m/sec) | Kg/m?
112.5 1208 661.4 1600
457.5 2025 1109 1950
oo 2887 1581 2000

3.1. Shagan River Simulations

We begin with the Shagan River simulations, which were all done at a yield of
125 KT and at three depths of burial (DOB): an over buried depth (980 m), an
optimally buried depth (680 m), a depth just below cratering (no ejecta) (300 m), and a
depth which causes cratering (200 m). The results for P waves were presented in Day,
et al. (1986), and we include them here for purposes of comparing with the spall
model. As can be seen in Table 3.1, the earth model is a half-space, with material
properties representing typical values for the high velocity near surface media at the
site. The far-field P and SV displacements are shown for three take-off angles in Fig-
ures 6 to 11. The take-off angles, 10°, 20° and 30°, are representative of teleseismic,
intermediate and regional slownesses (phase velocities) for this source structure. The
motions from the 2D simulations are overlain with 1D simulations in which the non-
linear properties at the source are the same as the 2D values. The 1D source (RDP)

was inferred, and the body waves were calculated for a linear elastic medium. Thus,

for the Shagan River half-space model, the 1D waveforms have the direct P phase, as

23
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well as the pP and pS elastic reflections. These signals do not include the effects of

mantle or crustal propagation, anelastic attenuation, or recording instrumentation.

In each case, the rise time and amplitude of the first peak in the P waves (Figures
6-8) is very nearly the same for the 1D and 2D calculations. For the shallow calcula-
tions, 200 and 300 m, the 1D and 2D waveforms diverge after the peak and are quite
different at later times, indicating that the cratering and near-cratering processes are
indeed different from elastic pP reflections. For the deeper DOB’s, 680 and 980 m,
the apparent pP phase on the 2D records appears to be diminished and delayed relative

to the 1D case.

The SV waves (Figures 9-11) show much greater differences between the 1D and
2D cases. The 2D solutions have a direct S wave, dve to vertical asymmetries in the
source, which is not in the 1D solutions. The main peaks in the 2D SV waves are
larger than the 1D peaks at all four DOB’s, and are about twice as big for 300, 680
and 980 depths. The duration of the main peaks is also greater for the 2D cases. A
large negative swing occurs on the 2D waveforms, which is much smaller on the 1D

signals.

As discussed above, we computed the 2D-1D waveforms and matched them to
those from the spall model. The parameters of the spall model which most closely

matched the numerical simulations are:




Table 3.2
Spall Model Parameters for the Shagan River Simulations
Depth Crack Crack Minimum Maximuru
of Burial Depin Radius Detachment Detachment
Velocity Velocity
4 exp Z; a Vi Va
(m) (m) (m) (m/sec) (m/sec)
200 100 600 1.1 20.0
300 150 600 1.1 15.¢
680 200 600 1.1 4.0
980 200 600 1.1 ! 1.5

The theoretical waveforms were found to be weakly dependent on the form of the
source function S(w,rq) in this case, so it was assumed constant. In Figures 12
through 15, we compare the P wave spall model waveforms with the 2D-1D
waveforms for each of the DOB’s. In general, the comparisons are quite good, both in
amplitude and shape. The parameter that varies the most in Table 3.2 is the maximum
detachment velocity v, . Recall that in Equation (28), Section 2.3, v, enters the solu-
tion in two ways. First, the & function term, which causes the first peak in the
waveforms, is proportional to the mean detachment velocity V. Second, the duration
of the signal (end of slap-down) is time ¢, = 2v,/g. As the DOB decreases, the 2D-
ID difference waveforms increase in amplitude and duration. Thus, as the DOB
decreases, v, is required to increase. We note that, even in the case where cratering
occured (200 m), the tension crack model provided a good representation of the P radi-
ation. The shapes of the signals for the 980 m case agree well. For the 680 m case,
the agreement is good except for an additional inflection in the later parts of the 2D

waveforms that is not modeled by the tension crack.

31




EOOg o eting o adap
BOOf sopfue jjo-oyey oody gw (souyy poysep) (opou Yaudo UOLsUGL 9y} s suolje{nuns

Toary uedeys (sourp prjos) qr-qe S WOy sosva- g ploy-dvy ooy to uostieduio)) ‘T1 28y

(0o9s) surl

0'v S'€ 0°€E §Z 0'Z ST 0T §0 00
FL _ _ _ _ _ _

32

19pow TredS —_—
0E€=e03 ‘pPI-pPZ

19pow Tfeds - ——— — 19pow 11edS —_—

0Z=e03 ‘pPl-pz

01=e03 ‘pT-pZ




BOJoj so[Fue jjo-oje) sodyy e (souyy poysep)

Toaly uedeyy (souyy pyos) qr-qg O} wWody soarvm- ] poyy-dey oyy jo uostrieduwor)

19pouw Tteds e e e

0z=01 ‘pPI-pz

wogpg Jo jenng jo yydop
[OPOUL Yordd> UOISUd} O} Yym suoljenuns

‘€1 ungyy

(o9s) auyy

'Y St 0t sz 0z §
( [ i l l

‘T 01 :
I | -

19pow Teds
0E=e03 ‘OT-p2

19pow yTeds
01~e01 'pI-p2Z

33




B dof SopFuk jjo-oyey vodif) e (soulg
wedeyy (sourp prjos) gr-qz

doaly]

UL gy JO eling
poysep) [opoul Jorly uoIstay o} Yim suol
Oy} WOodj SoARM- ] ploly-de) oYy Jo uOsll

(o9s) aw}l

0’y St 0t sz 02
L | | 1 1

) pdop
jejuuns

edwo;) ‘p1 andiy

T9pow reds
0g=e03 PpPI-PZ

Topou Tieds

Q0Z=e03

‘P1-PZ

T9pow yreds
01=e031 ‘p1-PZ

FT T T

I

ri

34




ar 986 Jo [erug jo yydap
b odoj sojBue jjo-oje; oudify je {sou1y poysep) jopoms yoess Uolsusy oy} ypm suorepnugs
doaty wewdeyy ?o:: pros) d1-dZ oY1 wolj soaem-g pPIdlj-iey oyl jo uosiieduio) ST a3y

(035) awry

0’ 6t 0°€E S°Z 0T 6T 0T 60 00
L f | l 4 It l i

Topow (feds ———————
0E=e03 ‘PT~-PZ
o€ sz 0z S°T 0°X $°0 0°0 0" v S°¢E o't $°z 072 00
1 H | 1 I 1 | S| ] J A4
b~ 9- —
—~ G- [—
— b- B
b— MI -
— 2~ .
- 1- .
. - O —
- 1 B
- 2 —
— ¢ -

Hmvos.za&m 1apow 11eds
0Z~=e013 ‘PI-pZ 0T=e03 ‘pi-pZ

k1]




The peak detachment velocity is inferred from field observations from ground
motion records at or near ground zero. We can do an analogous measurement by exa-
mining the vertical velocity in the finite difference simulation at the free-surface of the
grid. We find that the values of v, in Table 2.2 agree closely with the ground zero

velocities in the simulations.

Using the parameters in Table 3.2, we computed the SV waves from the tension
crack model and compared them with the corresponding 2D-1D SV waves. As can be
seen in Figures 16 to 19, the comparisons are not as good as the P-waves, especially at
the deeper DOB’s, where the amplitudes predicted by the model are too smail by fac-
tors of two to three. Attempts to find a set of parameters which would improve the
SV comparisons without degrading the P comparisons were unsuccesful. We note that
in all cases, the tension crack models derived from the P-waves underestimate the SV

radiation.

The results of the SV comparisons suggest that the tension crack model is not
rich enough in SV radiation. We therefore tried some additions to the model to
improve this situation. The additions, a compensated linear vector dipole and a distri-
buted double-couple, are pictured in Figure 20. We hypothesized that processes tran-
spired in the simulations that could be represented as modifications to the isotropic part
of the moment tensor. We first chose to represent this as a compensated linear vector
dipole or CLVD ( e.g., Knopoff and Randall, 1970). The CLVD represents a process
akin to squeezing a vertical tube of toothpaste. The moment density for the CLVD is

given by
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) 1
EOO
m = sELEt) (H+2) |0 % 0
0 0 -1

This moment tensor has zero trace. Following the analysis in Section 2, the formulas
for the displacements (P along the ray, SV nommal to the ray) are similar to Equations

(14) and (15),

cP kP ¢
ulivp = = Fépyp(ok) e il j S(o,ro) rodrg .
0

R
and
sV SV sy Cikg? f
UcLvp = —p— Fervp (k) e j S(w,rg) rodrg
0
where

Fhup(@k) = 02) (FA7% = 3,A%)

Filyp @K) = (M20) (0% - 3,0%) .
We then formed the sum
U =V Ugger + (1-V) Ucryvp

where u,,, is the tension crack solution, and 0sv<1. We assumed the time and spa-
tial dependence of S (w,ry) was the same for both the tension crack and CLVD. Fig-
ures 21 and 22 show the comparisons for the P and SV waves for the DOB=980 case
with v = 0 (all CLVD, no tension crack), which we found works best for this DOB.
We see that the P wave solutions are changed little except at the shallowest take-off
angle ( 30° ), where the second peak in the CLVD solutions is now too large. On the

other hand, the comparisons for the SV waves are greatly improved. The shape and
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amplitudes agree fairly well. The initial negative part of the 2D-1D signals is a direct
S wave from the explosive source. It is not part of the free surface interaction which
we are modeling here. For the DOB=680 case, we found that a value of v=0.5
(equal parts tension crack and CLVD) works better than other choices, but the results
are not as good as for DOB=980, as can bec seen in Figures 23 and 24. Although the
amplitudes of the main peak are matched well, the apparent period and change with
take-off angle of the following trough are matched poorly. We find that adding the
CLVD source to the tension crack for the shallow DOB’s (200 and 300) worsens the

comparisons.

Since this approach showed some promise, we also hypothesized that additional
sources of shear waves may be emanating from vertical cracks which are the boun-
daries of a cylinder which moves above the horizontal tension crack. That is, we ima-
gine that the material above the tension crack moves up and down as a unit, shaped as
a cylinder whose base is the tension crack. The relative motion along the vertical
sides would act as a distributed shear dislocation. Without showing the details, we
summarize by saying that after including this source in the computer code, its contri-
bution to the DOB=680 and 980 SV solutions was too small to match the 2D-1D

differences.

The tension crack model presenteu here matches the P waves due to free surface

interactions in these simulations very well, but the model includes only part of the SV

wave generation mechanisms.
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3.2. Pahute Mesa Simulations

The 2D and 1D P-wave signals are overlain in Figures 25 through 27. The calcu-
lations were done at DOB’s of 200, 680 and 980 m for the Pahute Mesa model, but
not at 300 m. The take-off angles (3.3%,11.4°,16.7°) were chosen so that the phase
velocities are the same as in the Shagan River simulations above. The first peaks of
the 1D and 2D signals align closely. For DOB’s 680 and 980, the apparent pP from
the 2D waveforms is lagged about 0.2 seconds relative to the elastic pP in the 1D
waveforms. The 2D pP amplitudes are attenuated relative to 1D amplitudes for the

shallower take-off angles (11.4° and 16.7°).
As with the Shagan River simulations, we fit the tension crack model to the 2D-
1D difference time series. The results are shown in the comparison plots in Figures 28

through 30. The fits of the model to the 2D-1D signals are generally good for the

three DOB’s and take-off angles. The parameters of the model are

Table 3.3
Spall Model Parameters for the Pahute Mesa Simulations
Depth Crack Crack Minimum Maximum
of Burial Depth Radius Detachment Detachment
Velocity Velocity
z exp Zg a Vi Vi
(m) (m) (m) (m/sec) (m/sec)
200 150 400 1.1 22
680 200 2200 1.1 2
980 150 2200 1.1 2

There are several differences between the model parameters derived here and those for
the Shagan River simulations. First, in the Shagan case, we found that the solutions

were insensitive to the choice of the form of the source function S(w,rg). This is not
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the case for the Pahute Mesa runs, where we found that S (w,r) must be distributed
over the crack with the largest values near the center. This is due to the lower wave
speeds, and hence phase velocities, in the Pahute Mesa model (Table 3.1). In Figures
28 through 30, a Gaussian spatial dependance with onset lagged by the pP time from
the explosion (see Section 2.1 and 2.2) was used. The solutions were not sensitive to
the details of the spatial dependance, as long as the maximum was at the center and
went to zero at the edge. This spatial dependance was required to match the change in
2D-1D signals with take-off angle. It was not needed for the Shagan River runs
because the wave speeds were about twice those for Pahute Mesa. For example, we
show the tension crack signals for a constant S(w,ry) for DOB=980 with the 2D-1D
signals in Figure 31. It can be seen that the results are not as good as in Figure 29

where the Gaussian spatial dependance was used.

Another feature of the Pahute Mesa simulations that differs from the Shagan
River runs is the large change in crack radius between the case for DOB=200 and the
other two DOB’s. This is presumably due to the shallow layering in the Pahute Mesa
earth model. Although the tension crack had a maximum detachment velocity (22

m/sec) similar to Shagan, it occured over a much smaller radius (400 m).

A further difference between the models for the two sites is that the maximum
detachment velocities for Pahute Mesa were the same for DOB’s 680 and 980,

whereas the velocity decreased from DOB=680 to 980 in the Shagan model. This is

again attributed to differences in the shallow nonlinear properties.
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We computed the SV waves for the tension crack using the parameters in Table
3.3, and compared them to the 2D-1D difference waveforms. They are shown in Fig-
ure 32, for DOB=680 m. As with the Shagan River simulations, the 2D-1D signals
are larger than those from the tension crack. Again this indicates that processes are
generating SV waves in the simulations that are not included in the tension crack

model.

3.3. Comparisons with Observations

From observations of surface ground motions and of physical manifestations of
Pahute Mesa tests, several authors have estimated the parameters of the spall process.
In Table 3.4, we compare their results with those for the tension crack model at the

optimal DOB (680).

Table 3.4. Spall parameters from field observations and
from the tension crack model for Pahute Mesa
Parameter Tension | Patton | Sobel | Viecelli | Stump | Rawson
Crack (1990) | (1978) | (1973) | (1985) | (1988)
Maximum
Velocity 2 6.4 8
(m/sec)
Radius 2200 1750 500 500-
(m) 2665
Momentum 7.5 9.2 3.5 0.58
( X102 Nt-s)
Mass 53 35 1.2 0.2 3.0
(x10!2 Kg)
Depth 200 110 100-
(m) 400

The authors cited in the table typically expressed their results as scaled values, in

which case we used 125 KT, the yield in the simulations. In addition, the values in
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Table 3.4 are the average values given by the authors. The mean detachment velocity
(1.55 m/sec) was used to compute the tension crack momentum, rather than the max-
imum velocity. The momentum, spall radius and depth from the tension crack model
lie within the spread of those inferred from observations. The mass is at the high end

while the maximum velocity is at the low end.

It is very difficult to estimate the parameters in Table 3.4 because of a paucity of
direct observations. There are typically few surface ground mn*on sensors, and no
sub-surface observations of ground motion or other phenomena such as cracking.
Inference of the spall process beyond estimating apparent pP amplit.de and travel time
from far-field recordings has not been successful. With these limitations in mind, it
can be sa.d that the parameters of this study are cunsistent with published field obser-

vations.
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4. SUMMARY AND CONCLUSIONS

We show that a simple model can be constructed which generates the far-field P
waves of a two-dimensional nonlinear calculation which includes the effects of the
free-surface for a range of depths-of-burial. The model which fits the P-waves from the
Shagan River simulations underestimates the SV-waves. The modei, proposed in its
original form by Day, et al. (1983), is based on using a tension crack which opens
due to the tension wave from the free surface. The material over the crack travels up
with the impulse of the tension wave and returns .nder the influence of gravity.
Stump (1985) modified the original model to include the effects of source by adding
an empirical time function based on chemical explosions. The modified model was
used by Taylor and Randall (1989) to model regional seismograms. In our formalism
presented in this report, we include the effects of source finiteness and those of crustal

reverberations. A time dependence is a natural consequence.

The parameters of the model compare favorably with observations based on field
data. In addition, McLaughlin, et al. (1990), use the model to compute regional
seismograms and find that in the Lg bandwidth, the spall contribution should be com-
parable to or greater thar that of the explosion signal alone. Since the spall model
which f.is the P-waves in our study generates SV-waves that are too small, the spall
model may lead to an underestimate of the Lg from spall. Spall, therefore, appears to

be a very significant source of Lyg.
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